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Removing the Sampling Restrictions from Family-Based Tests of Association
for a Quantitative-Trait Locus
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Summary

One strategy for localization of a quantitative-trait locus
(QTL) is to test whether the distribution of a quanti-
tative trait depends on the number of copies of a specific
genetic-marker allele that an individual possesses. This
approach tests for association between alleles at the
marker and the QTL, and it assumes that association is
a consequence of the marker being physically close to
the QTL. However, problems can occur when data are
not from a homogeneous population, since associations
can arise irrespective of a genetic marker being in phys-
ical proximity to the QTL—that is, no information is
gained regarding localization. Methods to address this
problem have recently been proposed. These proposed
methods use family data for indirect stratification of a
population, thereby removing the effect of associations
that are due to unknown population substructure. They
are, however, restricted in terms of the number of chil-
dren per family that can be used in the analysis. Here
we introduce tests that can be used on family data with
parent and child genotypes, with child genotypes only,
or with a combination of these types of families, without
size restrictions. Furthermore, equations that allow one
to determine the sample size needed to achieve desired
power are derived. By means of simulation, we dem-
onstrate that the existing tests have an elevated false-
positive rate when the size restrictions are not followed
and that a good deal of information is lost as a result
of adherence to the size restrictions. Finally, we introduce
permutation procedures that are recommended for small
samples but that can also be used for extensions of the
tests to multiallelic markers and to the simultaneous use
of more than one marker.
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Introduction

The transmission/disequilibrium test (TDT) introduced
by Spielman et al. (1993) has become a popular family-
based test of linkage between a marker and a suscepti-
bility locus. The attractiveness of the TDT is a result of
both its validity in structured populations and its power,
which can be much greater than that of conventional
linkage tests. The TDT has been extended to multiallelic
markers (Bickeboller and Darpoux 1995; Sham and Cur-
tis 1995; Schaid 1996; Spielman and Ewens 1996), to
families without parental genotype information (Curtis
1997; Boehnke and Langefeld 1998; Monks et al. 1998;
Schaid and Rowland 1998; Spielman and Ewens 1998),
and to quantitative traits (Allison 1997; Rabinowitz
1997; Schaid and Rowland 1999). Although the TDT
and its extensions that use parental information were
designed as tests of linkage in the presence of association,
they are also tests of association in the presence of link-
age, for samples of unrelated parent/child trios. The ad-
vantage of the TDT, in this context, is that it is not
sensitive to population stratification in the parental pop-
ulation, which can be a problem for the usual case-con-
trol test. For extensions to families without parental-
genotype information, the TDT is a valid test of asso-
ciation in the presence of linkage only if samples contain
unrelated sibships with exactly two children (one that
is affected and one that is unaffected, for tests involving
a susceptibility locus). If samples contain larger sibships,
then these tests are valid only as tests of linkage.

Tests of association are often used for a candidate
gene. Also, once a chromosomal region has been des-
ignated, through use of a linkage test, as being of interest,
association tests done with the use of markers in the
region may be useful for further localization of the sus-
ceptibility locus or QTL, since association is thought to
exist in human populations for small distances—typi-
cally, !2 cM. When the TDT and its extensions are used
to test for association, data sets must contain unrelated
families of minimal size (one child for families with pa-
rental genetic information and two children for families
without this information). If families with arbitrary
numbers of children have been sampled, then strategies



Monks and Kaplan: Association Tests for QTLs 577

must be used to reduce the data set. One is always re-
luctant to discard data, because of the probable loss of
power; however, if methods are not used to adjust for
the correlation between siblings that results from the
marker and the QTL being linked, then the false-positive
rate for tests of association will be unknown and will
be larger than expected.

Martin et al. (1997) generalized the TDT as a test of
association in the presence of linkage for a susceptibility
gene, for families with an arbitrary number of affected
children and with available parental marker–genotype
information. More recently, Horvath and Laird (1998),
using sibships of arbitrary size, developed a test of as-
sociation for a susceptibility gene when parental data
are missing. In both cases, the authors used the family
as the independent sampling unit, to avoid the elevated
false-positive rate caused by correlation between sibs. In
the present study, we extend the ideas of Martin et al.
(1997) and Horvath and Laird (1998), and we propose
three tests that can be used for quantitative-trait data
and that use information from all children. These tests
are valid tests of linkage and association, regardless of
the number of children sampled. Throughout the present
study, we assume that linkage is present and focus on
the test for association in the presence of linkage. For
the TQP test, we use genotype information for parents
and for all of their children, whereas, for the TQS test,
we use genotypes for all siblings (with no parental in-
formation). Finally, for the TQPS test, we use a combi-
nation of these types of family information. Similar to
its treatment in the study by Martin et al. (1997) and
Horvath and Laird (1998), the family is treated as the
independent sampling unit in all three tests.

In the Methods section below, we introduce each of
the three test statistics and derive their distributional
properties. Specifically, we show that the test statistics
are asymptotically standard normal under the null hy-
pothesis of no linkage or no association. We derive their
distribution on the basis of the alternative hypothesis of
linkage and association, and, assuming that there is
Hardy-Weinberg equilibrium at the marker and at the
QTL, we provide formulas to be used for sample-size
calculations. Additionally, permutation procedures are
given that are recommended for small samples but that
can also be used for extensions of the three tests to mul-
tiallelic markers and to the simultaneous use of more
than one marker.

We then compare the TQP and TQS tests with two other
nonparametric tests. The first test, which was introduced
by Rabinowitz (1997), uses parental-transmission in-
formation. The second test, which was developed by
Allison et al. (1999), is a permutation test for which
only sibship information is used. We will denote these
tests as TR and TA, respectively. Through simulation, we
demonstrate that the false-positive rate increases for

both of these tests, when nonminimal families are used.
We also compare the power of our tests, in which in-
formation from all children is used, to the power of the
TR and TA tests, in which data sets composed of families
of minimal size are used. These comparisons demon-
strate the validity of our tests as well as what is gained
by use of this additional information. We then provide
evidence that our permutation procedures for TQP and
TQS are valid. Finally, we demonstrate that the validity
of the TQP and TQS tests is not affected by population
stratification.

Methods

Notation

Consider a diallelic-marker locus with alleles A1 and
A2, with population frequencies p1 and p2, and a diallelic
QTL with alleles Q1 and Q2, with population frequencies
q1 and q2. Let v denote the recombination fraction be-
tween the marker locus and the QTL. Association—also
referred to as linkage disequilibrium—is measured with
the use of the disequilibrium coefficient for A1 and Q1,
denoted as D, where (Weir 1996).D = Pr(A Q ) � p q1 1 1 1

Define mrs as the trait mean for individuals with QTL
genotype QrQs, and define as the trait-distribution2jE

variance within one QTL genotype class. The parameter
represents all phenotypic variation not attributable2jE

to the QTL. We will use the parameterization in which
the trait mean of the homozygotes is centered at zero,
so that , , and , where . Them = a m = d m = �a a 1 011 12 22

phenotypic variance resulting from the QTL can be writ-
ten as . As a mea-2 2j = 2q q [a � d(q � q )] � (2q q d)G 1 2 2 1 1 2

sure of the amount of variation caused by the QTL, we
use broad-sense heritability, denoted as H2, which is the
proportion of the phenotypic variance caused by the
QTL—that is, (Falconer and Mackay2 2 2 2H = j /(j � j )G G E

1996).
Suppose that there are F families indexed by i. Let the

ti children in the ith family be indexed by j. Unless oth-
erwise noted, all families have the same number of chil-
dren—that is, for all families. Let Yij denote thet = ti

trait value for the jth child in the ith family, and let Ȳ
denote the mean over all children in all families, as com-
puted by . Let ( ) = 1 if the mother1 1F t ∗ ∗iȲ = S S Y X Xi=1 j=1 ij iM iFF ti

(father) is heterozygous at the marker locus, and let
( ) = 0 otherwise; denote as hi. Let XijM

∗ ∗ ∗ ∗X X X � XiM iF iM iF

(XijF) indicate whether marker allele A1 was transmitted
to the jth child by the mother (father), and define asX̄i

the mean of the ti values of . See figure 1 forX � XijM ijF

an example of notation.
The null hypothesis is Ho:no linkage or no association,

whereas the alternative hypothesis is Ha:linkage and as-
sociation. The part of the hypotheses concerning linkage
is straightforward; however, the part concerning asso-



578 Am. J. Hum. Genet. 66:576–592, 2000

Figure 1 Example of notation for a family with three children

ciation requires further detail, because of the possibility
of population stratification. If there is no population
stratification, then the null hypothesis is that there is no
linkage or association in the parental population. Al-
ternatively, if there is population stratification, then the
null hypothesis is that there is no linkage or association
in any of the subpopulations from which parental chro-
mosomes might originate. For clarity of presentation, it
is assumed, throughout the present study, that the pa-
rental population is homogeneous; however, computa-
tions can be extended to a more-complicated population
structure. An example is given in Appendix A. For a
more-detailed discussion, the reader is referred elsewhere
(Ewens and Spielman 1995). When the hypotheses are
expressed in terms of parameters, we have orH : v = .5o

versus and . In the present study,D = 0 H : v ! .5 D ( 0a

we assume that the marker and the QTL are in tight
linkage and that only the test of association is of interest.
For our theoretical derivations and simulations, we as-
sume that the marker and the QTL are both in Hardy-
Weinberg equilibrium. This assumption is made for com-
putational convenience and is required only for power
calculations.

Test Statistics

We begin with the case for which parental-genotype
information is available. If there is no association be-
tween the marker allele A1 and the QTL allele Q1, then
what is transmitted, at the marker locus, to a child from
a marker-heterozygous parent neither affects that child’s
quantitative trait nor is related to anything that affects
the quantitative trait, regardless of whether the marker
and QTL are linked. One measure of the marker/QTL
relationship is the covariance between the quantitative
trait and a variable representing transmissions at the
marker locus (Rabinowitz 1997). Consider a family with
one parent that is heterozygous at the marker locus—
that is, . Without loss of generality, suppose thath = 1i

the mother is heterozygous. For each family, the covar-
iance between XijM and Yij should be zero under the null
hypothesis. Since the expectation of XijM is .5, an esti-
mate of the covariance is . Like-1 t ¯S (Y � Y)(X � .5)j=1 ij ijMt

wise, for a family with , the covariance betweenh = 2i

and should be zero. The expectation ofX � X YijM ijF ij

is ; therefore, an estimate of the covarianceX � X 1ijM ijF

is . For the ith family, these1 t ¯S (Y � Y)(X � X � 1)j=1 ij ijM ijFt

estimates of covariance can be written, in our notation,
as random variable Ui:

t1 ∗ ∗¯ [ ]U = (Y � Y) X (X � .5) � X (X � .5) .�i ij iM ijM iF ijFt j=1

Suppose that our data set contains families with at
least one parent that is heterozygous at the marker locus;
in this instance, for a random family, we have Ui cor-
responding to or . In Appendix B, it is shownh = 1 h = 2i i

that the expectation of Ui for such families is

D(1 � 2v)[a � d(q � q )]2 1E(U ) = . (1)i 4p p (1 � p p )1 2 1 2

Hence, we see that the expectation of Ui will be zero, if
at least one of the following four scenarios is true:

1. The marker and QTL are unlinked (i.e., ).v = 0.5
2. There is no association between the marker and the

QTL (i.e., ).D = 0
3. The QTL has no effect on the trait (i.e., ).a = d = 0
4. is 0 without .a � d(q � q ) a = d = 02 1

Scenario (4), although possible, is not a likely scenario.
Scenario (3) contradicts the definition of a QTL so that
only scenarios (1) and (2) are pertinent. Furthermore,
scenarios (1) and (2) jointly compose the null hypothesis;
therefore, discounting scenario (4), the null hypothesis
will be true if and only if . Although we haveE(U ) = 0i

assumed, throughout this discussion, that the population
is homogeneous—that is, there is no stratification—it is
not difficult to show that, if there is population strati-
fication, the expectation of Ui will be zero if there is no
association or no linkage within each subpopulation (see
Appendix A).

If alleles A1 and Q1 are positively associated—that is,
if —then, since Q1 causes high quantitative-traitD 1 0
values (because ), we would expect the covariancea 1 0
to be positive. In other words, high trait values will often
occur with transmissions of allele A1, and, therefore, the
expectation of Ui will be positive. Similarly, if the A1

and Q1 alleles are negatively associated ( ), weD ! 0
would expect the covariance to be negative. From equa-
tion (1), we can see that this is, indeed, often true; how-
ever, it is possible to see a negative covariance resulting
from a positive association or a positive covariance re-
sulting from a negative association. Nonetheless, in all
of these situations, the expectation of Ui will not be equal
to zero.

It is thus reasonable to construct a test of association
and linkage, on the basis of Ui. We will denote the num-
ber of families with one heterozygous parent as F1 and
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the number of families with two heterozygous parents
as F2. When the family is noted as the independent unit,
a reasonable test statistic is

Ū
, (2)�Var (U )/(F � F )0 i 1 2

where is the mean of the values of Ui and whereŪ F � F1 2

Var0(Ui) is the variance of the random variable Ui, under
the null hypothesis. Knowledge of the underlying genetic
model would be needed to compute Var0(Ui) exactly.
This type of information will rarely be available; there-
fore, an estimate must be obtained from the data. Since
the expectation of Ui is 0 under the null hypothesis, an
estimate of Var0(Ui) is given as .2 F �F 21 2s = S U / (F � F )U0 i=1 i 1 2

It is noted that the Ui do not have to be identically
distributed, as long as their expectation is 0. An example
of such a situation arises when sampling families with
information on different numbers of children. Using this
estimate in our statistic from equation (2), we have

Ū
T =QP 2�s /(F � F )U0 1 2

F �F1 2� Ui
i=1=

F �F1 2
2� � U .i

i=1

Under the alternative hypothesis, the expectation of
Ui will be nonzero, and the estimate of variance will no
longer be correct. If the number of families sampled is
large, then the distribution of TQP can be approximated
by a normal random variable with a nonzero mean and
with unit variance multiplied by a factor that is a func-
tion of VarA(Ui), which is the variance of Ui under the
alternative hypothesis, and the expectation of under2sU0

the alternative hypothesis:

Ū
T =QP 2�s /(F � F )U0 1 2

( )Var U¯ A iU �= # 2� sVar (U )/(F � F ) U0A i 1 2

Ū Var (U )A i≈ # ,� 2E(s )˜ ˜� U0Var (U )/(F � F )A i 1 2

where and are the expected values of F1 and F2,˜ ˜F F1 2

respectively. That is,

F̃ = 4p p (1 � 2p p )F (3)1 1 2 1 2

and

2 2F̃ = 4p p F . (4)2 1 2

From this approximation, we can compute the power
for a given model as well as the average sample size
needed to achieve a specified power. Let

Ū
W = (5)QP

˜ ˜�Var (U )/(F � F )A i 1 2

and let

Var (U )A i
g = ,�QP 2E(s )U0

so that . Substituting equations (1), (3),T ≈ W # gQP QP QP

and (4) into the expectation of WQP from equation (5),
we get

E(UFh = 1 or h = 2)i i iE(W ) =QP
˜ ˜�Var (U )/(F � F )A i 1 2

D (1 � 2v)[a � d(q � q )]2 14p p (1�p p )1 2 1 2

=
2 2�Var (U )/[4p p (1 � 2p p )F � 4p p F]A i 1 2 1 2 1 2

�FD(1 � 2v)[a � d(q � q )]2 1
= .� �Var (U ) 4p p (1 � p p )A i 1 2 1 2

Suppose that we are interested in testing the alternative
hypothesis that there is positive association ( ) be-D 1 0
tween the marker allele A1 and the QTL allele that causes
high trait values, and suppose that we are assuming that
this corresponds to the expectation of Ui being positive.
If we let za denote the value such that ,Pr(Z � z ) = aa

where Z is a standard normal random variable, then
power is given by

Pr(T � z ) ≈ Pr(W # g � z )QP a QP QP a

za= Pr W �QP( )gQP

za ( )≈ Pr Z � � E W .QP[ ]gQP

Given a marker and QTL model, along with the type I
error rate (a), power can be computed by use of a stan-
dard normal distribution.

Of greater interest is the calculation of the sample size
needed for a specified power of —that is, calcu-1 � b
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lation of F for which . When thePr(T � z ) = 1 � bQP a

above approximation is used, F must satisfy:

zaz = � E(W ) .1�b QP
gQP

(6)

Only E(WQP) is a function of F. Solving equation (6) for
F, we get:

2z 4p p (1 � p p )Var (U )a 1 2 1 2 A iF = � z .1�b( ) 2 2 2{ }g D (1 � 2v) [a � d(q � q )]QP 2 1

It is noted that, although t does not appear explicitly in
the formula for F, it will affect the variance of Ui and
the expectation of . Formulas for these are not shown;2sU0

however, a program that calculates these quantities
—along with power or sample size—is available from
the authors (University of Washington School of Public
Health and Community Medicine Biostatistics).

Next, consider the case for which no parental-geno-
type information is available. Since inference of parental
genotypes in an unknown mixture of populations is not
straightforward, we chose not to infer parental geno-
types. We instead used informative families to indicate
the presence of at least one parent that is heterozygous
at the marker. A family is informative if there are at least
two children with differing marker genotypes. The prob-
ability of an informative family with t children is

1
Pr(info) = 4p p (1 � 2p p ) 1 �1 2 1 2 ( )t�12

1 12 2�4p p 1 � � .1 2 ( )2t�1 t2 2

We define the following random variable for the ith fam-
ily: . This is analogous1 t ¯ ¯V = S (Y � Y)(X � X � X )i j=1 ij ijM ijF it

to Ui with replaced by an∗ ∗X (X � .5) � X (X � .5)iM ijM iF ijF

estimate. Conditional on the family being informative,
the expectation of Vi is

1 t � 1
E(VFinfo) = D(1i ( )Pr(info) t

� 2v)[a � d(q � q )] .2 1

See Appendix C for the derivation. It is interesting to
note that

t � 1 4p p (1 � p p )1 2 1 2E(VFinfo) = #i t Pr(info)

#E(UFh = 1 or h = 2) ,i i i

and, so, as t increases, the expected value of Vi ap-
proaches that of Ui. Following the same reasoning used
in the construction of TQP, we define a statistic on the
basis of an estimate of the variance of Vi under the null
hypothesis. Without loss of generality, suppose that the
first FI of the F families sampled are informative. Under
the null hypothesis, the expectation of Vi is zero, so that
an estimate of the null variance is . Let2 F 2Is = (S V )/FV0 i=1 i I

be the mean of the for the informative families.V̄ V Fi I

Our statistic is

V̄
T =QS 2�s /FV0 I

FI� V/Fi I
i=1=

FI
2�( )1/F � V /F( )I i I

i=1

FI� Vi
i=1= .

FI
2�� Vi

i=1

TQS is asymptotically standard normal under the null
hypothesis. As was the case for Ui, under the alternative
hypothesis, the expectation of Vi will be nonzero, and,
for large samples, an approximation can be used to com-
pute power and sample size. Denote the variance of Vi,
under the alternative hypothesis, as , and denote the2jVA

expected number of informative families as F̃ =I

. Then the approximate power of the TQS test,FPr(info)
for a test of positive association with type I error a, is
given by

2 ˜E(s ) FV0 I�Pr Z � z � E(VFinfo) ,�[ ]a i2 2j jVA VA

where Z is a standard normal random variable. For
power equal to , we have a required sample size1 � b

of

22 2E(s ) tV0F = z � z�a 1�b( ) ( )2j t � 1VA

2j Pr(info)VA# .{ }2 2 2D (1 � 2v) [a � d(q � q )]2 1

It is straightforward to combine the two types of fam-
ily data. Let FP represent the number of families for
which there is parental-genotype information and in
which at least one of the parents is heterozygous. Let FS

represent the number of informative families that do not
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have parental-genotype information. Define the follow-
ing test statistic as

F FP S

( )� U � � V / F � F( )i i P S
i=1 i=1

T =QPS 2 2 2� ( ) ( )1/ F � F F s � F s[ ]P S P U0 S V0

F FP S� U � � Vi i
i=1 i=1= .
F FP S

2 2�� U � � Vi i
i=1 i=1

Our use of this statistic combines the two types of fam-
ilies by giving more weight to the most-sampled type.
As before, TQPS is asymptotically standard normal under
the null hypothesis and will have the same properties as
TQP and TQS. Following the preceeding work for TQP and
TQS, it is straightforward to compute either the power
for a given model or the sample size required for a spec-
ified power. The only additional information needed for
these computations is what fraction of the families will
(or will not) have parental information.

Permutation Procedures

For small samples, permutation procedures can be
used to determine significance levels for the TQP, TQS,
and TQPS tests. These procedures can also be used to
determine either the significance of extensions to mul-
tiallelic markers or extensions that utilize more than one
marker.

Under the null hypothesis, the probability that a het-
erozygous parent transmits marker allele A1 to a child
with trait value Y is equal to .5. Thus, if the mother is
heterozygous, then, for child j with trait value Yij, XijM

is equally likely to be 0 or 1. If there is only one child,
then a permutation procedure can be based on random
assignment of XijM as being equal to 0 or 1 with equal
probability. Complications arise when more than one
child in the family has been sampled. These complica-
tions are a result of linkage between the marker and the
QTL. In the presence of linkage, children with shared
marker alleles will have similar quantitative traits, even
in the absence of association. This can be taken into
account by simultaneous randomization of XijM (and,
similarly, of XijF), for heterozygous parents across the
sibship. Consider the XijM for family i. Given the vectors

and′)T = [X ,X , ,X ] 1 � T = [1 � X ,1 �iM i1M i2M itM iM i1M

, a permutation procedure can be con-′)X , ,1 � X ]i2M itM

structed by randomization between and . ItT 1 � TiM iM

is easy to show that this procedure is equivalent to ran-
domization of the sign of UiM. An analogous procedure
holds for UiF with vectors and . If the parentalT 1 � TiF iF

contributions to Ui cannot be determined, then the sign
of Ui can instead be randomized.

A similar scenario arises when parental-genotype in-
formation is not available. First, consider the following
form of Vi

t1 ¯ ¯V = (Y � Y)(X � X � X )�i ij ijM ijF it j=1

t1 ¯ ¯= (Y � Y)(X � X )� ij ijM iMt j=1

t1 ¯ ¯� (Y � Y)(X � X ) ,� ij ijF iFt j=1

where ( ) is the fraction of contributed by the¯ ¯ ¯X X XiM iF i

mother (father). Noting that Vi will be nonzero only if
at least one of the parents is heterozygous, suppose that
only the mother is heterozygous. Randomization be-
tween the and , for the mother, will be validT 1 � TiM iM

under the null hypothesis. While we cannot determine
these vectors, this randomization is equivalent to ran-
domization of the sign of Vi. An analogous case exists
if only the father is heterozygous. If both parents are
heterozygous, then there are four equally likely per-
mutations:

1. andT TiM iF

2. andT 1 � TiM iF

3. and1 � T TiM iF

4. and .1 � T 1 � TiM iF

Since we do not know the values for these vectors, we
cannot randomize among the four permutations; how-
ever, we can randomize between permutations 1 and 4.
This is again equivalent to randomization of the sign of
Vi.

This results in a unified permutation procedure. Given
UiM, UiF, Ui, or Vi for a family, a permutation procedure
is based on randomization of the sign of the observed
value. We suggest use of a Monte Carlo approximation
to measure significance. Details are given elsewhere
(Monks et al. 1998).

Simulation Parameters

We considered 18 QTL models. Heritability (H2) was
equal to .1, .3, or .5. The QTL allele Q1 had a population
frequency of .1 or .5. We studied QTLs with additive,
dominant, and recessive modes of inheritance. By setting
these parameters, the means for the trait distributions
for individuals with QTL genotypes Q1Q1, Q1Q2, and
Q2Q2 were uniquely determined. Conditional on an in-
dividual’s genotype, the trait distribution is normal, with
the appropriate mean and variance, , equal to 1.2jE

Marker allele A1 had a population frequency of .5 or
.8 and was completely linked to the QTL. The disequi-
librium coefficient was set to 0 for simulations under
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Table 1

Estimates of Significance Level for the TestTR

ESTIMATES OF SIGNIFICANCE LEVEL FORa

TR TQP

H2 Pr(Q1) Pr(A1) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 6

.1 .1 .5 .010 .011 .011 .012 .014 .014 .010

.1 .1 .8 .010 .011 .011 .012 .013 .014 .010

.1 .5 .5 .010 .011 .012 .012 .013 .014 .010

.1 .5 .8 .010 .011 .012 .012 .013 .014 .010

.3 .1 .5 .010 .012 .015 .018 .021 .024 .010

.3 .1 .8 .010 .012 .015 .018 .021 .024 .010

.3 .5 .5 .010 .012 .015 .018 .021 .024 .010

.3 .5 .8 .010 .012 .015 .018 .021 .024 .010

.5 .1 .5 .010 .014 .018 .024 .029 .034 .010

.5 .1 .8 .010 .014 .018 .024 .029 .034 .010

.5 .5 .5 .010 .014 .019 .023 .028 .034 .010

.5 .5 .8 .010 .014 .019 .024 .028 .034 .010

a Estimates are based on 1,000,000 simulated samples of 500 fam-
ilies with t children, for a QTL with additive mode of inheritance.
Estimates for the TQP test, with , are also given.t = 6

Table 2

Estimates of Significance Level for the TA Test

ESTIMATES OF SIGNIFICANCE LEVEL FORa

TA TQS

H2 Pr(Q1) Pr(A1) t = 2 t = 3 t = 4 t = 5 t = 6 t = 6

.1 .1 .5 .010 .011 .012 .013 .014 .010

.1 .1 .8 .010 .011 .012 .013 .014 .010

.1 .5 .5 .010 .011 .012 .013 .014 .010

.1 .5 .8 .010 .011 .012 .012 .014 .010

.3 .1 .5 .010 .014 .017 .020 .024 .010

.3 .1 .8 .010 .014 .017 .020 .024 .010

.3 .5 .5 .010 .014 .017 .020 .024 .010

.3 .5 .8 .010 .013 .017 .020 .024 .010

.5 .1 .5 .010 .017 .024 .031 .037 .010

.5 .1 .8 .009 .017 .023 .030 .037 .010

.5 .5 .5 .010 .017 .024 .030 .037 .010

.5 .5 .8 .010 .017 .024 .030 .037 .010

a Estimates are based on 1,000,000 simulated samples of 500 fam-
ilies with t children, for a QTL with additive mode of inheritance.
Estimates for the TQS test, with , are also given.t = 6

the null hypothesis, and it was set to its maximum value
for simulations under the alternative hypothesis.

We derived formulas for the power of the TQP and
TQS tests. The powers for the TR test with and fort = 1
the TA test with can be computed from the formulast = 2
for the TQP and TQS tests, respectively. For estimates of
significance level, we simulated 1,000,000 data sets, to
achieve precision to three decimal places. For estimates
of the significance level for the permutation procedures
for TQP and TQS, we used 10,000 simulated data sets
with 99 permutations. For estimates of significance level
within a stratified population, we also used 10,000 sim-
ulated data sets. All estimates correspond to a one-sided
test of positive association, with a significance level of

.a = .01

Results

Significance Levels of TR and TA for Increasing t

Table 1 contains estimates of the significance level for
the test, for a QTL with additive mode of inheritance.TR

Estimates are based on 500 families that all have the
same number of children t. We show estimates for t =

. For , the TR test is valid as a test of asso-)1, ,6 t = 1
ciation, and, so, our estimates are equal to the actual
significance level of 0.01. As t increases, the actual level
of significance increases as a result of the nonvalidity of
the TR test. The increase becomes more extreme as her-
itability, H2, increases. In particular, consider the QTL/
marker model with and , for sib-Pr(Q ) = .1 Pr(A ) = .51 1

ships of size . The estimate of significance level att = 6
is .014, which is much less than the estimate for2H = .1
, which is .024. When heritability is .5, the es-2H = .3

timate of significance level, .034, is even larger. Estimates

of significance are also given, for our TQP test, for fam-
ilies with . All estimates are equal to .01 and thust = 6
support the validity of the TQP test. The results for a
QTL with dominant and recessive modes of inheritance
were similar to those presented (data not shown).

Table 2 contains estimates of the significance level for
the TA test, for a QTL with additive mode of inheritance.
Estimates are based on 500 families, all of which have
the same number of children. We give estimates for

. For , the TA test is a valid test of as-)t = 2, ,6 t = 2
sociation, as our estimates confirm. As t increases, the
actual level of significance also increases, as a result of
the nonvalidity of TA. As was the case for TR, this in-
crease becomes greater as heritability increases. For the
same model mentioned above, estimates of significance
are .014, .024, and .037 for heritability of .1, .3, and
.5, respectively. Estimates of significance are also given,
for our TQS test, for families with ; in all cases, thet = 6
estimates are equal to .01. The results for a QTL with
dominant and recessive modes of inheritance were sim-
ilar to those presented (data not shown).

The amount of increase from the expected level of
significance, for the TR and TA tests, will depend on more
than heritability. The QTL model, marker model, num-
ber of children, expected level of significance (in this
case, .01), and sample size will all affect the increase.
Unfortunately, we will not usually know the parameters
of our model and, therefore, will not know the impact
of nonvalidity. All that can be stated is that the level of
significance will be larger than that which is expected.

Comparison of the TQP and TR Tests

We have established that the TQP test is a valid test of
association, regardless of the number of children in the
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Figure 2 Estimated power for the TQP and TR tests of association, for a QTL with additive mode of inheritance and heritability equal to
.1. For figures A–D, was set equal to , , and , respectively. The TQP (dashed lines) test is{Pr(A ),Pr(Q )} {0.8,0.1} {0.5,0.1} {0.8,0.5} {0.5,0.5}1 1

based on samples of families with two, three, four, or five children (power curves are indicated by increasing power with t), whereas the TR

(dotted line) test is based on families with one child. A solid line indicates power equal to 0.8.

family that have been sampled (see the Methods section
above). Although it is expected that the TQP test based
on information for all children will be a more-powerful
test of association than will the TR test based on infor-
mation for a single child, to what extent this will occur
is unknown. To investigate this, we compared the power
of the TQP test done with samples of families with t

children with the power of the TR test done with samples
of families with one child. Figure 2 contains power
curves for the QTL/marker models with additive mode
of inheritance and heritability equal to .1, for the TR test
and for the TQP test, with t = 2–5. It is noted that the
TQP statistic reduces to the TR statistic when . Thet = 1
four models provide power comparisons over a range
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Table 3

Sample-Size Ratios for the TQS and TA Tests,
at 80% Power

RATIOa FOR MODELS

IN FIGURE 2

t A B C D

2 1.000 1.000 1.000 1.000
3 .506 .510 .511 .522
4 .343 .348 .350 .364
5 .261 .268 .270 .286

a Ratio of the sample size required for the TQS

test, with samples of families with t children, to
achieve 80% power to the sample size required
for the TA test, with samples of families with
two children. Models correspond to those of
figure 2.

of values for the disequilibrium coefficient. Specifically,
figure 2A–D shows disequilibrium coefficients equal to
.02, .05, .1, and .25, respectively. Panels A–D demon-
strate that, as the disequilibrium increases, the sample
size required for reasonable power decreases. However,
despite the level of disequilibrium, the relationship be-
tween the TQP and TR tests is clear. Significant infor-
mation is lost by use of only families of minimal
size—that is, families where . As an example, con-t = 1
sider figure 2B, for which and .Pr(A ) = .5 Pr(Q ) = .11 1

For 80% power, the TQP test requires 404 families with
five children, whereas the TR test requires 1,813 families
or, with respect to genotyping, 2,828 genotypes, com-
pared with 5,439 genotypes, respectively. From a plan-
ning standpoint, more than four times as many singleton
families, compared with families with five children, need
to be collected for 80% power. While it is clear that a
good deal of power is gained by use of more than one
child per family, it is also apparent that, with each ad-
ditional child used, there is a diminishing gain in power.
The largest gain in power is obtained by use of two
children per family rather than one. The increase in
power gained from use of three—rather than
two—children is also substantial; however, information
gained from an increase beyond three children per family
continues to diminish. For model 2C, the number of
families required for 80% power are 808, 417, 287, 221,
and 182 for families with one, two, three, four, and five
children, respectively. Approximately half as many fam-
ilies with are needed, compared with families witht = 2

. This is a sizable decrease, compared with thet = 1
∼20% fewer families required with families with five
children compared with those with four children. Al-
though most of the gain in power is derived from in-
creasing t from 1 to 2 and from 2 to 3, it is striking to
note that, by use of five children—rather than just one
child—per family, only 23% as many families are
needed.

Comparison of the TQS and TA Tests

We also compared the test, in which sibships ofTQS

size three, four, and five were used, with the test, inTA

which sibships of size two were used. The tests were
compared with regard to the QTL/marker models in
figure 2 (results not shown). Table 3 contains the values
of the ratio , where is the number of familiesF /F Ft 2 t

required for the test, with samples of sibships of sizeTQS

t, to have 80% power, and where is the number ofF2

families required for the test to have 80% power.TA

Ratios are given for the four models of figure 2, with t
= 2–5. The TQS statistic is equal to the TA test statistic,
when . Conclusions reached from these results aret = 2
identical to those achieved when TQP is compared with
TR: considerable information is obtained by use of more

than two children per family, and the largest gains in
power result from an increase from to or fromt = 2 t = 3

to . We see that, for each of the models, ap-t = 3 t = 4
proximately half as many families are required for TQS

with as are required for TA. Approximately one-t = 3
third as many families are required for TQS with t = 4
as are required for . Both of these decreases in requiredTA

sample size are considerable; however, we again see that
the increase in power and, therefore, the decrease in
sample size, diminish as t increases.

Comparison of the TQP and TQS Tests

The question arises, with the use of any family-based
test, as to how much information is gained by genotyp-
ing of parents. To answer this question, we sampled
families with a constant number of children t, with t =
2–6. We calculated the number of families, FP, required
for the TQP test to have power equal to 80%. We then
calculated the number of sibships, FS, needed for the TQS

test to have 80% power. Table 4 contains the ratioF /FP S

for the 12 marker/QTL models with an additive mode
of inheritance for t = 2–6. Now the statistics TQP and
TQS are composed of random variables U and V, re-
spectively. Since V is an estimate of U, the statistic TQS

is expected to be more variable than is TQP and, thus,
is expected to result in a less-powerful test. The F /FP S

ratio should therefore be !1. As t increases, the estimate
V will improve, and, so, the ratio should increase to one.
The results support this. For each of the 12 models, the
ratio is smallest for , and it increases with t. Con-t = 2
sider, as an example, the model with , ,2H = .1 q = .51

and . For , the ratio is .524. In other words,p = .5 t = 21

the TQP test requires only 52.4% of the families that are
required for the TQS test. However, if families with six
children were sampled, the TQP test would require 86.3%
of the families required for the TQS test, thus bringing
into question how much effort should be given toward
collection of parental genotypes. A few ratios were 11.
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Table 4

Sample-Size Ratios for the TQP and TQS Tests, at 80% Power

SAMPLE-SIZE RATIOa

H2 Pr(Q1) Pr(A1) t = 2 t = 3 t = 4 t = 5 t = 6

.1 .1 .5 .526 .705 .795 .849 .885

.1 .1 .8 .522 .699 .788 .841 .876

.1 .5 .5 .524 .700 .792 .850 .863

.1 .5 .8 .525 .707 .795 .847 .881

.3 .1 .5 .580 .783 .880 .931 .967

.3 .1 .8 .571 .770 .868 .924 .957

.3 .5 .5 .573 .762 .844 .889 .957

.3 .5 .8 .578 .777 .870 .926 .971

.5 .1 .5 .636 .858 .956 1.000 1.040

.5 .1 .8 .630 .850 .951 1.005 1.035

.5 .5 .5 .604 .793 .870 .900 .944

.5 .5 .8 .636 .847 .938 .981 1.021

a Ratio of the sample size required for the TQP test, with samples
of t children, to achieve 80% power to the sample size required for
the TQS test. All models are for a QTL with additive mode of
inheritance.

Figure 3 Estimates of the significance level for the TQP and TQS

tests for the 36 marker/QTL models. Estimates are given for samples
of 200 families of constant size t, where t = 1–5. The models36 # 5
were numbered 1–180. Note that TQS is not applicable for .t = 1

After further investigation, we have found that, for
higher values of heritability, it is possible to have the
ratio 11 (results not shown). We also computed the

ratio for the same 12 marker/QTL models withF /FP S

dominant and recessive modes of inheritance (data not
shown). Identical conclusions were reached.

Permutation Procedure for TQP and TQS

We provide evidence that our permutation procedures
for TQP and TQS are valid, by estimation of the signifi-
cance levels for the TQP and TQS tests for the 36 marker/
QTL models. Estimates were based on data from 200
families with a constant number of children t. The range
of the t value was 1–5, with the exception that TQS was
not applicable for . The marker/QTL/sam-t = 1 36 # 5
pling models were numbered from 1–180. Figure 3 con-
tains a plot of the estimates of significance levels. Two
SD lower and upper bounds are indicated. The signifi-
cance-level estimates fall satisfactorily within two SDs
of .01. This is the case for both the TQP test (fig. 3A)
and the TQS test (fig. 3B).

Validity of the TQP and TQS Tests under Stratification

To demonstrate that the TQP and TQS tests are valid
when there is population stratification, we simulated a
population that is a mixture of two homogenous sub-
populations. We considered the scenarios where .5 and
.75 of our sampled families are from subpopulation 1.
For the 12 QTL/marker models with heritability of .1,
we simulated samples of 500 families with five children,
for all possible assignments of one of these models to
subpopulation 1 and of another of the models to sub-
population 2 (132 possibilities). Table 5 contains the
mean estimate of the significance level, across these 132

models, for both the TQP test and the TQS test, when
subpopulation 1 comprises .5 and .75 of the population.
We have also given 95% confidence intervals for each
mean. Two of the confidence intervals do not contain
the expected significance level of .01. We attribute this
to our x2 approximation. The estimates deviate from .01
by very little. Furthermore, the deviation is in the op-
posite direction of that which would be expected as a
result of problems with stratification.

Discussion

Family-based methods have previously been intro-
duced for testing association of markers or candidate
genes with a QTL. These tests avoid the increase in the
false-positive rate that occurs in the typical case-control
test if there is population stratification. However, the
current family-based association tests have sampling re-
strictions that result in a loss of information. However,
if these sampling restrictions are not followed, then the
false-positive rate of the tests will increase. Furthermore,
we have demonstrated, through simulation, that the
amount of increase in the false-positive rate will be
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Table 5

Estimates of Significance Level for the TQP and TQS Tests in a Stratified Population

Proportion of Sample from
Meana Estimated Significance Level

( 95% CI) for

Subpopulation 1 Subpopulation 2 TQP TQS

.50 .50 .0097 (.00957, .00991) .0097 (.00955, .00989)

.75 .25 .0099 (.00975, .01009) .0100 (.00981, .01015)

a The mean estimated significance level for the 132 marker/QTL models (see text for
details). Estimates are based on 10,000 simulated samples of 500 families with five children,
for a QTL with heritability of .1.

model dependent. Since the true underlying model is
rarely known, a researcher will be unaware of the true
effect of nonvalidity. This problem will be compounded
as more and more markers or candidate genes are tested,
since a researcher will have no sense of how many of
their positive results may be in error.

We have developed three tests that are valid tests of
association (and linkage) without the sampling restric-
tions of current tests. In addition, we have shown that
a great deal of power is acquired by use of all children.
In fact, for all three of our tests, the power increases
when more children are used. If association tests are to
be performed with the use of a previously obtained data
set, then this would imply that all children should be
used in the test of association. If a study is being de-
signed, then other considerations, such as ascertainment
and genotyping costs, will determine whether fewer large
families or more small families should be sampled. For
the majority of the models we have considered, the use
of families with parental-genotype information will al-
low for a more-powerful test than will tests in which
only sibship information is used. The size of this increase
in power is largely dependent on how many children
have been sampled. As the number of children in the
family increases, the power gained by having parental
information diminishes. In practice, a data set will con-
tain families with and without parental genetic infor-
mation. While one strategy would be to ignore the pa-
rental information and to use the TQS test, we would
recommend the use of our TQPS test. Scenarios do exist
where use of sibship information only can result in a
more-powerful test than will use of the available paren-
tal-transmission information; however, these models
generally have high heritability. Although we have
shown that considerable power can be obtained by sam-
pling more than the minimal number of children per
family, it may be that current tests could be used, in
conjunction with special reduction strategies, to reduce
families or sibships to minimal size. One strategy would
be to randomly sample the minimal number of children
from each family and to compute the significance level

on the basis of this reduced data set. Other strategies
might sample the minimal number of children but might
specify that they have extreme trait values (e.g., largest
in family, a discordant pair, etc.). These methods should
account for some of the power difference seen with use
of all children compared with use of the minimal number
of children needed (one for TR and two for TA). We are
currently investigating these strategies.

For simplicity, we have assumed that all families have
an equal number of children. If samples of families with
an arbitrary number of children are available, then our
statistics have the same algebraic form, and only the
interpretation of the statistic changes. The mean of the
random variable studied (Ui when parental information
is available and Vi when sibship information is used) is
now a weighted mean across family size, and the vari-
ance of the random variable is also a weighted variance
across family size. The asymptotics rely on the number
of families within each class, where class is defined by
family size. If any of the classes have few families, then
the normal approximation will be poor, and we would
recommend the use of our permutation procedures.

The tests that we have proposed are for a diallelic
marker; however, they are easily extended to multiallelic
markers. There are two straightforward extensions. A
statistic can be computed for each marker allele, and,
as an overall statistic, the maximum of their absolute
value or the sum of their squares can be used. The per-
mutation procedures can then be used to measure sig-
nificance. In addition to extensions to multiple alleles,
it is possible to extend these methods to the use of mul-
tiple tightly linked markers. One could compute a sta-
tistic for each marker and then could define an overall
statistic—perhaps the maximum or sum across markers.
The permutation procedure can be used to measure sig-
nificance, by simultaneously shuffling across the markers
(Lazzeroni and Lange 1998; McIntyre et al., in press).

We have not included a technical discussion of costs.
A researcher will have to weigh the genotyping and as-
certainment costs, to determine whether resources
should be spent on sampling additional children or on
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sampling parental-genotype information. In terms of
power, for our models, larger families with parental-
genotype information provide the greatest power; how-
ever, costs will determine the ‘‘optimal’’ sampling
scheme. Allison (1997) has provided a discussion of costs
associated with ascertainment, genotyping, and pheno-
typing.
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Appendix A

Effect of Population Stratification on the Expectation of Ui

Consider a population that is composed of B subpopulations, where the probability of a random family from
subpopulation b is . Suppose that there is random mating within each of the subpopulations, so that eachfb

subpopulation will have an expectation and variance of Ui specific to that subpopulation’s allele frequencies and
linkage-disequilibrium coefficient. Denote the expectation and variance as and , respectively. The expectation2m jb b

and variance of Ui, for a random family, are therefore andBE(U ) = S f mi b=1 b b

Var(U ) = E[Var(UFsubpopulation b)] � Var[E(UFsubpopulation b)]i i i

B

2= f j � Var(m )� b b b
b=1

B B B 2

2 2= f j � f m � f m .� � �( )b b b b b b
b=1 b=1 b=1

Under the null hypothesis, there is no association, within each subpopulation, between alleles at the marker locus
and the QTL. It follows, from equation (1) in the text, that the expectation of Ui, for each of the subpopulations,
is 0—that is, for . Thus, the expectation and variance of , for a random family, are 0 andm = 0 b = 1,...,B Ub i

, respectively. The estimate of variance used in the construction of TQP is an estimate of this variance, soB 2� f jb=1 b b

that TQP will be asymptotically standard normal under the null hypothesis. A discussion of the effects of population
stratification and admixture is provided elsewhere (Ewens and Spielman 1995).

Appendix B

Derivation of the Expectation of Ui

Families with one or two heterozygous parents provide within-family information about association between
alleles at the marker locus and QTL. We begin by considering families with one heterozygous parent. Without loss
of generality, assume that the mother is heterozygous for the marker. Then the random variable Ui reduces to

. Let be the conditional marker-allele probability . Denote the mother’s1 ti ¯U = S (Y � Y)(X � 0.5) p Pr(A FQ )i j=1 ij ijM iFr i rti

marker/QTL haplotypes as HiM1 and HiM2. Let trrQr represent the event that allele Qr has been transmitted to the
given individual. Denote the probability that a marker-homozygous parent transmits the QTL allele, Q1, to a child,
by use of , where , and denote the probability that it transmits a Q2, by use of2 2˜ ˜q q = q � D(p � p )/(p � p )1 1 1 1 2 1 2

. Conditional on , and with the assumption that and ,∗ ∗ ¯˜ ˜q = 1 � q X = 1 X = 0 Y ≈ m t = t2 1 iM iF i
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t1
E(U ) = E[(Y � m)(X � .5)]�i ij ijMt j=1

= E[(Y � m)(X � .5)]i1 i1M

2 2

= E[(Y � m)(X � .5)FH = A Q , H = A Q ]�� i1 i1M iM1 1 r iM2 2 s
r=1 s=1

#Pr(H = A Q , H = A Q )iM1 1 r iM2 2 s

2 2 p p q q1Fr 2Fs r s= E[(Y � m)(X � .5)FH = A Q , H = A Q ]�� i1 i1M iM1 1 r iM2 2 s ( )p pr=1 s=1 1 2

p p q q1F1 2F2 1 2= E[(Y � m)(X � .5)FH = A Q , H = A Q ]i1 i1M iM1 1 1 iM2 2 2( )p p1 2

p p q q1F2 2F1 1 2� E[(Y � m)(X � .5)FH = A Q , H = A Q ]i1 i1M iM1 1 2 iM2 2 1( )p p1 2

p p q q 11F1 2F2 1 2= (1 � 2v){E[(Y � m)Ftr r Q ] � E[(Y � m)Ftr r Q ]}i1 1 i1 2( ) ( )p p 41 2

p p q q 11F2 2F1 1 2 { }� (1 � 2v) E[(Y � m)Ftr r Q ] � E[(Y � m)Ftr r Qi1 2 i1 1( ) ( )p p 41 2

1 � 2v q q1 2 ( )= # # p p � p p1F1 2F2 1F2 2F14 p p1 2

{ }# E[(Y � m)Ftr r Q ] � E[(Y � m)Ftr r Q ]i1 1 i1 2

1 � 2v q q1 2 ˜{ }( )= # # p p � p p # q E[(Y � m)Ftr r Q , tr r Q ]1F1 2F2 1F2 2F1 1 i1 1 14 p p1 2

˜ ˜ ˜�(q � q )E[(Y � m)Ftr r Q ,tr r Q ] � q E[(Y � m)Ftr r Q , tr r Q ]2 1 i1 1 2 2 i1 2 2

1 � 2v q q1 2 ( )= # # p p � p p1F1 2F2 1F2 2F14 p p1 2

˜ ˜ ˜ ˜( )[ ]# m � m)q � (m � m)(q � q ) � (m � m)q11 1 12 2 1 22 2

1 � 2v q q1 2 ˜ ˜ ˜ ˜( )( )= # # p p � p p # m q � m (q � q ) � m q1F1 2F2 1F2 2F1 11 1 12 2 1 22 24 p p1 2

D p � p2 1= (1 � 2v) a � (q � q )d � 2dD .2 1 ( )[ ]2 24p p p � p1 2 1 2

We obtain the same derivation for families in which only the father is heterozygous. Thus, for families with one
heterozygous parent:

D p � p2 1E(UFh = 1) = (1 � 2v) a � (q � q )d � 2dD . (B1)i i 2 1 ( )[ ]2 24p p p � p1 2 1 2

For families with two heterozygous parents, we need the probability that a marker-heterozygous parent transmits
the QTL allele, Q1, to a child. Denote this probability as , where , and denote the˘ ˘q q = q � D (p � p ) / (2p p )1 1 1 1 2 1 2

probability that a Q2 is transmitted as . We can write Ui as the sum of two components:˘ ˘q = 1 � q2 1
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t t1 1∗ ∗¯ ¯U = (Y � Y)X (X � .5) � (Y � Y)X (X � .5)� �i ij iM ijM ij iF ijFt tj=1 j=1

= U � U .iM iF

Thus, conditional on and assuming that the parents are of the same genetic background, we have∗ ∗X = X = 1iM iF

. The above derivation can be used to compute the expectation for , with one alteration. Trans-E(U ) = 2E(U ) Ui iM iM

missions from the other parent are now from a heterozygous parent, and, so, ( ) must be replaced by ( ).˜ ˜ ˘ ˘q q q q1 2 1 2

From this, we get

D p � p2 1E(U Fh = 2) = (1 � 2v) a � (q � q )d � dD . (B2)iM i 2 1 ( )[ ]4p p p p1 2 1 2

Using equations (B1) and (B2), we can derive the expectation of Ui for a family with at least one heterozygous
parent:

E(U ) = Pr(h = 1Fh = 1 or h = 2)E(UFh = 1)i i i i i i

�Pr(h = 2Fh = 1 or h = 2)E(UFh = 2)i i i i i

4p p (1 � 2p p ) D1 2 1 2= # (1 � 2v)2 24p p (1 � 2p p ) � 4p p 4p p1 2 1 2 1 2 1 2

p � p2 1# a � (q � q )d � 2dD2 1 ( )[ ]2 2p � p1 2

2 24p p D1 2� # (1 � 2v)2 24p p (1 � 2p p ) � 4p p 2p p1 2 1 2 1 2 1 2

p � p2 1# a � (q � q )d � dD2 1 ( )[ ]p p1 2

D(1 � 2v)[a � d(q � q )]2 1= .
4p p (1 � p p )1 2 1 2

Thus, we have

D(1 � 2v)[a � d(q � q )]2 1E(UFh = 1 or h = 2) = .i i i 4p p (1 � p p )1 2 1 2

Appendix C

Derivation of the Expectation of Vi for an Informative Family

As was the case for Ui, the random variable Vi is the sum of two components, one from the mother (ViM) and
one from the father (ViF):
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ti1 ¯ ¯V = (Y � Y)(X � X � X )�i ij ijM ijF it j=1i

t ti i1 1¯ ¯ ¯ ¯= (Y � Y)(X � X ) � (Y � Y)(X � X )� �ij ijM iM ij ijF iFt tj=1 j=1i i

= V � V ,iM iF

where ( ) is the part of corresponding to the mother (father). There are three types of family defined by¯ ¯ ¯X X XiM iM i

the number of heterozygous parents. Obviously, if family i has no heterozygous parents, then . Next,E(V) = 0i

consider families with exactly one heterozygous parent. Without loss of generality, suppose that the mother is
heterozygous. Then, conditional on , and letting and , we have∗ ∗ ¯X = 1 X = 0 Y ≈ m t = tiM iF i

E(V) = E(V )i iM

t1 ¯= E (Y � m)(X � X )� ij ijM iM[ ]t j=1

t1 ¯= E (Y � m)(X � .5 � .5 � X )� ij ijM iM[ ]t j=1

¯= E(U ) � E[(Y � m)(.5 � X )]iM i1 iM

= E(U ) � .5E[Y � m]iM i1

1 t � 1
� E[(Y � m)X ] � E[(Y � m)X ]i1 i1M i1 i2Mt t

1 1
( )= E(U ) � E Y � m � E[(Y � m)X ]iM i1 i1 i1M2t t

= E(U )iM

2 21
� E[Y � mFH = A Q , H = A Q ]�� i1 iM1 1 r iM2 2 s2t r=1 s=1

#Pr(H = A Q , H = A Q )iM1 1 r iM2 2 s

2 21
� E[(Y � m)X FH = A Q , H = A Q ]�� i1 i1M iM1 1 r iM2 2 st r=1 s=1

#Pr(H = A Q , H = A Q )iM1 1 r iM2 2 s

D p � p2 1= (1 � 2v) a � d(q � q ) � 2dD2 1 ( )[ ]2 24p p p � p1 2 1 2

21 D(p � p )2 1� # # {[a � d(q � q )](p � p ) � 2dD}2 1 2 12 22t 2p p (p � p )1 2 1 2

1 D p � p2 1� a � d(q � q ) � [2dD � p a � p d(q � q )]2 1 1 1 2 1 ( )2 2{ }( )t 2p p � p1 1 2
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Dv p � p2 1� a � d(1 � 2q ) � 2dD1 ( )2 2[ ]2p p p � p1 2 1 2

t � 1 D p � p2 1= # # (1 � 2v) a � d(q � q ) � 2dD .2 1 ( )[ ]2 2t 4p p p � p1 2 1 2

Thus, we have

t � 1 D p � p2 1E(VFh = 1) = # # (1 � 2v) a � d(q � q ) � 2dD . (C1)i i 2 1 ( )[ ]2 2t 4p p p � p1 2 1 2

For families with two heterozygous parents, we have (with the assumption that the parents areE(V) = 2E(V )i iM

from the same population). However, E(ViM) is not that of equation (C1), since we are conditioning on two
heterozygous parents. It can be shown that, conditional on there being two heterozygous parents,

t � 1 D p � p2 1E(VFh = 2) = # # (1 � 2v) a � d(q � q ) � dD . (C2)i i 2 1 ( )[ ]t 2p p p p1 2 1 2

The TQS test is recommended when parental information is not available, and, so, there will be no knowledge
of how many of the family’s parents are heterozygous. All that can be determined is whether a sibship is informative
for the marker. Thus, we need the expectation of Vi, conditional on a family being informative. Using equations
(C1) and (C2), we get

E(V)i[ ]E VFI(info) =i Pr(info)

1
[ ]= Pr(h = 1)E(VFh = 1) � Pr(h = 2)E(VFh = 2)i i i i i iPr(info)

1 t � 1
= D(1 � 2v)[a � d(q � q )] ,2 1( )( )Pr info t

where

1 1 12 2Pr(info) = 4p p (1 � 2p p ) 1 � � 4p p 1 � � .1 2 1 2 1. 2( ) ( )t�1 2t�1 t2 2 2
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